
Towards Scalable Video Analytics at the Edge

Theodore Stone1 Nathaniel Stone1 Puneet Jain2 Yurong Jiang3 Kyu-Han Kim4 Srihari Nelakuditi1

1University of South Carolina 2Google∗ 3LinkedIn∗ 4Hewlett-Packard Labs

Abstract—Breakthroughs in deep learning, GPUs, and edge
computing have paved the way for always-on, live video analytics.
However, to achieve real-time performance, a GPU needs to be
dedicated amongst a few video feeds. But, GPUs are expensive
resources and a large-scale deployment requires supporting
hundreds of video cameras – exorbitant cost prohibits widespread
adoption. To ease this burden, we propose Tetris, a system
comprising of several optimization techniques from computer
vision and deep-learning literature blended in a synergistic
manner. Tetris is designed to maximize the parallel processing
of video feeds on a single GPU, with a marginal drop in inference
accuracy. Tetris performs CPU-based tiling of active regions
to combine activities across video feeds. resulting in a condensed
input volume. It then runs the deep learning model on this
condensed volume instead of individual feeds, which significantly
improves the GPU utilization. Our evaluation on Duke MTMC
dataset reveals that Tetris can process 4x video feeds in parallel
compared to any of the existing methods used in isolation.

I. INTRODUCTION

Deep learning inference accuracy has recently surpassed hu-

mans for several image recognition tasks. Given that a plethora

of new applications could be enabled using real-time video

analysis, it is natural to raise the question of scalability and

hardware requirement of deep learning based video analytics.

A system that analyzes a large number of camera feeds needs

to overcome two fundamental challenges in the connectivity

and the compute. The connectivity challenge relates to the re-

quirement of high-bandwidth and low-latency networks. Edge

computing addresses the connectivity issue to some extent by

locating compute nodes closer to the data source – avoiding

long round-trip network delays. However, edge computing

presents new challenges in the application scalability. Avoiding

round-trips to the cloud results in reduced computing power.

An edge compute node is expected to be far less powerful than

the cloud, containing a few GPUs at best. Therefore, this paper

seeks to answer how we can enable real-time video analytics

in a cost efficient manner at the edge, as depicted in Figure 1.

Industry trends suggest an edge compute node to be as

powerful as a workstation, supporting up to two GPUs per

node. Any video analytics task such as image classification or

object localization would rely on these GPUs for the heavy-

lifting. To seamlessly enable video analytics at the edge, it

is desirable that the number of compute nodes required is

minimized. Past works in this area focused on minimizing

inference time per video frame, giving little attention to the

parallel inferences on a GPU. But having a dedicated compute

node per camera is neither cost-effective nor maintainable.

*The work was done while the authors were at Hewlett-Packard Labs.

Fig. 1: A typical deployment of video-analytics

Therefore, we set out to explore how well we can harness the

parallelism in a GPU to process multiple feeds simultaneously.

Our primary goal is to squeeze the most out of a given GPU;

specifically in terms of the number of parallel inferences drawn

on a large corpus of video feeds. We define processing to be

real-time if inferences are drawn at a rate greater than the

native frame rate. We declare that our design goal is met if the

median inference rate for popular deep-learning tasks across

a large number of video feeds exceeds their native frame rate.

Contributions: This work explores the opportunities available

in scaling video analytics, when only a handful of GPUs are

present at the edge computing node. We notice that existing

techniques in isolation only provide marginal improvements.

However, due to their complementary nature, they can be inte-

grated to achieve significantly higher throughput. We harness

this synergy into a comprehensive system Tetris, which

performs active region identification across all video feeds and

packs them into a condensed volume. We pass these condensed

volumes through optimized CNNs and carefully orchestrated

system pipeline – achieving substantial parallelism. In design-

ing Tetris, we make minimal assumptions and consciously

confine within the bounds of a production deployment.

Outcome: The final outcome of this work is captured in

Figure 2. It shows the maximum expected throughput per

video feed for multiple feeds, for an application involving

detection/localization of people, with and without Tetris,

Clearly, as the number of feeds increases, the relative gain

with Tetris gets wider. Specifically, without Tetris we

can expect to process 3, 4, and 7 feeds respectively at 30, 20,

and 12 FPS, whereas at the same rates Tetris can handle 8,

16, and 36 feeds, yielding up to 5x gain at lower frame rates.

How this outcome is achieved forms the crux of the paper.

II. MOTIVATION

Video analytics on a GPU could be scaled in various ways. In

this section, we present an exhaustive set of opportunities and

discuss their merits and demerits. We harness their collective



Fig. 2: Performance of the proposed system Tetris at varying
numbers of total feeds processed, compared to the baseline system.

power in our final system, Tetris. Before we discuss all

the opportunities, first we briefly describe the GPU related

terminology and deep learning based inference process.

A. Background

Batching: A key aspect of GPU programming is ensuring

that the GPU has sufficient data to operate. While there are

many ways to maximize data rate to the GPU such as over-

laying data transfers and computation using CUDA streams

(explained shortly), larger transfers are usually handled more

efficiently than smaller ones. Batching is a way to achieve

this and involves taking several inputs to the deep model and

combining them into a single batch. The batch is sent to and

processed by the GPU in one fell swoop. Data in a batch is

stored as a single contiguous array in memory; in the case of

image data this requires each image to be of the same size.

Kernel: It is a piece of code that executes on the GPU. Kernels

are designed to perform a specific task in parallel on multiple

data. The kernels’ work is split up into groups of threads called

blocks. Each thread performs the same operation on a portion

of the data. The number of blocks and threads per block are

configurable by programmer and affect kernel performance.

Kernels are launched by a CPU onto a CUDA stream.

CUDA Stream: A CUDA stream is a sequence of operations

that operate in issue order on the GPU. These operations

are either memory transfers to and from the GPU or kernel

launches. By default, all CUDA operations occur in the default

stream, but the user can choose to use different streams to

achieve higher level concurrency. This most commonly allows

memory transfers to be overlaid with computation, but it is also

possible to overlay multiple kernel executions under the right

circumstances, an analysis of which is presented in [1].

Network: A deep neural network model consists of a number

of computational layers. A subset of these layers, most no-

tably convolution and fully connected layers, contain intrinsic

parameters (kernel weights and biases in the former, inner

product weights and biases in the latter) which are learned

during a supervised training period. In addition to these intrin-

sic, static parameters, neural networks also contain dynamic

data to record the state of the intermediate calculations. These

two sources, which we will refer to as network parameters

and network data respectively, constitute the vast majority of

the memory footprint of a deep neural network.

B. Opportunities

We now discuss various opportunities available for making

video analytics scalable on a GPU. They are categorized as:

1) multi-threading; 2) model pruning; 3) identifying active

regions; and 4) batching active regions. In each case, we

provide some supporting preliminary experimental results.

All experiments shown below are performed on the Duke

multi-target, multi-camera (MTMC) dataset [2], which consists

of videos of pedestrians from 8 cameras on the Duke Univer-

sity campus. It contains more than 2000 unique pedestrians in

a one hour time frame. We adopt FRCNN (Faster-RCNN) [3],

which is a VGG-16 [4] network based object detector and

is capable of localizing more than 20 distinct types of ob-

jects. The detector pipeline is implemented using Caffe and

OpenCV. Hereafter when we refer to an inference, we mean a

single forward pass on FRCNN yielding detection results for

some (possibly batched) input. All experiments are conducted

on HP Z840 workstation with 32 GB main memory and an

Intel Xeon processor containing 10 physical (20 virtual) cores

and a dedicated NVidia Titan XP GPU with 12 GB memory.

1) Multi-Threading: Directly using multiple CPU threads,

each owning a copy of the deep model on the GPU, is not

feasible due to the large memory requirement of a typical deep

model. For instance, FRCNN detection model contains 235

million parameters, requiring up to 2.0GB of GPU memory

for storing the model, input data, and intermediate states.

Replicating deep-learning model across more than 8 threads,

causes out-of-GPU-memory error. Figure 3 shows the number

of analyzed frames per second, hereafter referred to as infer-

ences per second (IPS), as a function of the number of threads,

by applying FRCNN on the Duke dataset. Because each thread

uses its own copy of the model, adding more threads to

the GPU also adds more models, which end up vying for

limited GPU resources. This contention results in a significant

performance drop with each additional thread/model.

Shared Queue: A way to avoid unnecessary copies of network

parameters and reduce memory requirement is to have CPU

threads share a common deep learning model. While this ap-

proach scales in terms of memory, it enforces serial execution

on the GPU. The total delay if n video feeds are present

could be up to t×n, where t is the inference time per frame.

Figure 4 shows IPS when only one model is maintained in

memory. Sharing deep-learning model allows a large number

of threads/feeds at the cost of a significant drop in IPS.

Synchronous Model: A bottleneck of the above approach is

that the queue enforces a serial behaviour. It is natural to ask

why not invoke multiple synchronous calls on the same model.

Most deep learning frameworks, including Caffe, maintain



Fig. 3: Inferences per second (with 99% confidence interval) for
FRCNN when running multiple deep learning model instances.

Fig. 4: Inferences per second (with 99% confidence interval) for
FRCNN with multiple feeds using a shared deep-learning model.

intermediate data over the course of an inference, precluding

this approach due to race conditions and data corruption.

CUDA Streams: CUDA streams provide a means to execute

multiple GPU operations in parallel. In our case, each CUDA

stream may load a copy of the deep-learning model – similar to

the multi-threaded scheme. This approach is advantageous in

that it simplifies the problem of receiving gains from CUDA

streams, typically an in-depth process of finetuning specific

kernel parameters within the scope of a single application.

While this somewhat blunt take on CUDA streams may not

guarantee optimal kernel concurrency, it opens the door for

further concurrency between model executions. Like the multi-

threaded scheme, our approach is primarily limited by the

space needed to maintain a large number of model parameters

in GPU memory – which in theory could be improved by

sharing them across streams. However, the framework (e.g.,

Caffe) does not support this currently.

Fig. 5 shows that the inference time of FRCNN improves

on average by 11% for an unpruned model with two CUDA

streams. The improvement for the pruned variant (described

shortly) is slightly greater, as its smaller kernels are more

easily overlaid within the GPU due to their lighter use of GPU

resources (CUDA cores/shared memory). We do not notice

further gains beyond two CUDA streams as the available GPU

resources saturate when more than two models are present.

Fig. 5: Performance gains from CUDA streams for a detection with
pruned and unpruned FRCNN. Note that the lighter weight pruned
FRCNN benefits more from CUDA streams.

2) Model Pruning: The high accuracy of deep neural net-

works could be attributed to a large number of parameters

present in the model. However, majority of these parameters

are redundant and could be represented using sparse matrices,

saving up to 95% of memory. Memory gains from the sparsity

do not immediately translate to inference performance because

sparsity imposes new overheads by reducing GPU parallelism,

data locality, and uniform memory access [5]. Instead, pruning

seeks to reduce the model’s size by eliminating unneeded pa-

rameters through structured sparsity. This effectively replaces

larger, sparse matrices with smaller dense ones, which can be

efficiently processed on the GPU [6]–[8].

We use a pruned version of FRCNN as our base model. This

pruned model consists of a VGG-16 head obtained using the

pruning strategy discussed in [8]. In addition, we reduce the

size of the final decision-making fully connected layers and

relearn those parameters with finetuning. This latter change

was motivated by the fact that we focus on single class

detections (people only) while general FRCNN can handle

over 20 different classes. The size of this pruned model is

approximately 322 MB, about 6.35 times smaller than the un-

pruned model. We compare the performance of unpruned and

pruned models on VOC 2012 validation dataset in Figure 6. It

is evident that our pruned model, while saving memory, does

not suffer any significant degradations in accuracy.

3) Active Regions: While analyzing the time taken to make an

inference on a video frame, we find that a significant portion

of the time in a typical deep inference is spent performing

convolutions on the input image volume. Figure 7 shows

the time spent on different components of the above pruned

version of the FRCNN model. It is clear that convolutions

take roughly 3 times longer than both the time for the fully

connected layers and the time spent on the CPU.

Because the convolution operation scales linearly with the

volume of the input image (width, height, and depth), its time

can be improved by diminishing the area of these input images.



Fig. 6: Pruned version of FRCNN experiences a minimal drop in
accuracy when evaluated on the VOC 2012 validation dataset.

Fig. 7: Time taken to perform convolutions dominates the other times
in our pruned version of FRCNN. Typically FRCNN convolutions
take roughly 60% of the time while fully connected layers take 40%.

This can be efficiently accomplished in video analytics by

limiting processing to only those regions of a camera feed

that are of interest, namely, those containing activity. For a

static camera, only the subset of a given video feed that

is changing from one frame to the next will ever contain

activity, meaning that we can limit our processing to only

these regions. Note that active regions are generally noisy and

do not guarantee the existence of an object of interest, hence

the need for the deep inference. In practice, these regions are

always significantly smaller than the original image, as shown

in Figure 8, indicating that substantial gains are possible.

Fig. 8: Percent of the image covered by active regions

Such a method is only beneficial if active regions within a feed

can be identified at little cost compared to the inference time.

This can be accomplished with a computationally simple frame

subtraction approach, where the elementwise difference in

pixel intensities between consecutive frames is used to indicate

activity. In practice, we often wait for several frames to pass

before performing the subtraction in order to have a significant

difference between subsequent frames. Differences are further

accentuated through thresholding followed by erosion and di-

lation operations. The final active regions are found by taking

the bounding boxes of convex hulls formed on these residual

regions. These operations, being sufficiently lightweight to run

at a faster rate than that of frames received from a typical live

camera feed, do not impact the system throughput and cause

only a negligible increase in the latency. Figure 9 compares

the time to identify active regions with the inference time. It

is apparent that active region detection time is insignificant.

Fig. 9: CPU can identify active regions much faster than they can
be processed by the deep inference model.

4) Batching Active Regions: The next question that arises is

how to efficiently process multiple active regions. A naive

implementation may simply perform a separate inference on

each active region, possibly performing more than one infer-

ence per image but on a smaller combined area. For detector

networks expecting fixed inputs, this approach can still be used

by performing image warping on each active region. Figure

10 shows that this approach is mostly faster than not using

active regions due to the reduced image area. A significant

opportunity for improvement is present in this naive scheme,

however. Because active regions are relatively small compared

to the total image size, and because only one active region is

processed at a time, the GPU is underutilized in this scheme.

The results of this underutilization are clearly illustrated in

Figures 11 and 12, which show the distribution of active region

sizes (areas) in the Duke dataset and our GPU performance for

a range of image sizes, respectively. The GPU is only saturated

with images larger than 128K (217) square pixels, meaning that

images smaller than this have poor pixel processing times.

These active regions may process at a faster rate overall

than the entire frame due to their reduced size, but do not

experience a superior time per pixel compared the larger

alternative. Coincidentally, active regions in our dataset are



Fig. 10: On average it is faster to process
active regions rather then entire image. Fig. 11: Distribution of active regions areas.

Fig. 12: Larger areas are in general processed
more efficiently than smaller ones.

frequently much smaller than 128K (217) square pixels, having

an average area between 4K (214) and 8K (215) square pixels.

This size discrepancy results in a rarely fully-utilized GPU for

the naive scheme, opening the door for greater improvements.

GPU can be better utilized by using batching to bundle multi-

ple active regions together. This scheme is especially attractive

when processing multiple video feeds, as this plurality of

frame sources will better guarantee the existence of multiple

active regions for batching. We consider two strategies for

batching active regions: stacking and tiling.

Active Region Stacking: We define a stack of active regions

as a 3D volume of slices placed one above the other as

in a conventional batch. We cannot apply this traditional

batching directly, however, as active regions are variably

sized, preventing their placement within a contiguous swath

of memory as is required for a batch. As such, each active

region must be padded to a constant size (the size of the

largest region) in order to be stacked. This arrangement wastes

space proportional to the variability of the active region area

for a given batch. The performance of this scheme is shown

in Figure 13. While stacking performs better than the case

without active regions, wasted space due to padding effectively

negates any benefits from batching that this strategy could

enjoy over processing active regions without batching.

Fig. 13: Stacking active regions performs similarly to processing each
active region independently without batching.

Active Region Tiling: The second strategy we consider for

active region batching is tiling, where active regions are placed

onto a single image surface like tiles onto a floor. The problem

then is to find a tiling scheme that minimizes the amount of

wasted space given nonuniform tiles. This can be done by

formulating this task as a variant of the bin packing problem

for two-dimensional objects. To this end, we use the first-fit

decreasing algorithm [9] to find an approximate solution to

the bin packing problem, which is NP-hard. In practice, this

heuristic algorithm performs well and has been shown to use

no more than 11/9 OPT + 6/9 bins, where OPT is the optimum

number of bins for the packing [9]. For detector networks that

support variable sized images, we impose no upper bound on

the allowable bin size by dynamically resizing the bin during

construction. For those that require a constant size input, we

can fix the bin size to the expected dimensions and overflow

the packing into additional bins if needed.

Figure 14 gives an example of a packed image slice using

tiling method on frames from multiple video feeds. The

performance of this strategy relative to the default and no

batching approaches is shown in Figure 15. We observe that

tiling is consistently superior to the other two.

Fig. 14: Example slice of a batch with bin packing.

To dig into the source of superior performance of tiling,

we show in Figure 16 the distribution of wasted space for

each active region strategy and the default case where active

regions are not used. For the latter case we compare the

active region area of each frame to the total frame size to

measure space wastage. Unsurprisingly, the default scheme

is the least efficient, as the majority of most frames contain

relatively little activity, as seen previously. The scheme with

no batching occupies the other extreme, as no space is wasted



Fig. 15: Tiling active regions performs much better.

by performing separate inference on each active region. The

two active region batching methods fall between these two,

with tiling outperforming stacking. Based on these results, we

employ tiling to batch active regions found in the video feeds.

Fig. 16: Processing each active region independently incurs no wasted
space, while stacking wastes much space. Tiling active regions is a
good compromise between the two.

Summary: The essence of the opportunities for scaling video

analytics on a singe GPU can be summarized as follows.

Multi-threading is beneficial only if we can fit more than one

model in GPU memory, i.e., only smaller models can benefit

from multi-threading. CUDA streams can be used to provide

performance benefits if multiple models are present in the GPU

memory by putting each model on its own CUDA stream.

Both these opportunities are made possible with pruning,

particularly when dealing with large models. Pruning is a

salutary practice if the drop in accuracy is almost negligible,

which is possible with knowledge of the application. Batching

multiple feeds is a good idea when each input volume is

small, which is the case with active regions. Based on these

observations, in the following, we design an efficient system

for detecting people by leveraging the synergy in combining

the techniques of pruning, multithreading, CUDA streams, and

tiling of active regions. We refer to this system as Tetris,

as it puts all these ideas together in a coherent manner.

III. SYSTEM IMPLEMENTATION AND EVALUATION

In this section, we describe the implementation and evaluate

Tetris. Our main aim is to assess throughput gains provided

by Tetris in a variety of settings. A secondary, but no

less important, goal is to determine how Tetris affects the

accuracy of the underlying deep learning model. Specifically,

we verify that our approach yields substantial throughput gains

without a significant drop in application accuracy.

A. Implementation

In our implementation of Tetris, we consider the problem

of object detection, which is a common primitive underlying

many video analytics applications. We choose FRCNN [3]

as our detector network, pruned as described previously, and

extended to support batching. Several modifications are also

done in Caffe in order to support CUDA streams. The network

entity is given a reference to a CUDA stream to be set at

runtime, while kernel launches, memory copies, and device

synchronize operations are modified to be done on the CUDA

stream being utilized by the corresponding network.

The flow of Tetris system is depicted in Figure 17. One or

more camera feeds feed into the active region detector which in

turn provides active regions to the bin packer. The bin packer

appropriately records the transformation of each active region

and sends the batch to the GPU, where it is processed by

the deep learning model. Finally, the results are mapped back

to their original feeds and positions for application specific

processing. An elaboration of this workflow is shown below.

Fig. 17: Tetris: Video frames from multiple cameras are fed into
the active region detector that identifies activity in each frame. Active
regions are combined into a batch by the bin packer and sent to the
GPU for the deep inference. After the deep inference, results are split
up according to their origin feeds for application specific processing.

As we employ active region tiling, some processing is needed

to reconstruct the correct output from a tiled input created by

bin packing. This is accomplished by recording the transfor-

mation mapping each active region on the original frame to its

position within the batch slice. Note that this transformation

includes the identifier of the feed producing the active region

in cases where more than one video feed is used.

At the end of the deep inference on the batch, the output

slice is re-partitioned based on the active regions given as

input. Each active region partition may contain one or more



location results. Spatially, these location results should be fully

contained within their corresponding active region; those that

encroach on other active regions are clipped appropriately.

When a correspondence is established between each location

result and its active region, the location result is transformed

back into the space of the original image using the inverse

of the transformation previously recorded. In the unlikely

event that a location result spans two or more active regions

to the extent that its true assignment is ambiguous, it is

ignored. Although other strategies for handling this rare case

are possible, we leave their exploration to future work.

B. Evaluation

Before we present our evaluation results, first we describe the

experimental setup. All experiments are conducted on an HP

Z840 workstation using the training/validation set of the Duke

MTMC dataset. The videos from cameras 2 through 8 (we

disregard camera 1 as parts of its video seem to be shaky)

are each partitioned into three 10 minute segments yielding a

total of 21 videos, totaling 3.5 hours. Each video is assigned an

activity level to provide a sense of system performance under

varying numbers of people in the scene. For simplicity, we

only consider three levels of activity, low, medium, and high.

Activity levels for each are determined by analyzing general

intensities of the frame subtractor run over each video. These

segments are then classified based on average activity into the

three discrete bins. 11 videos are classified as low activity, 8

as medium, and only 2 as high activity.

One Thread Multiple Feeds

We first examine the throughput of our system when utilizing

one shared model for multiple video feeds. In this scenario,

each deep inference is performed on a tiled batch constructed

from the current active regions gathered from all feeds. We

compare our scheme to the base case, where a single model

performs one inference per frame on a typical batch con-

structed from each feed without active regions (frames from

each feed are stacked). To measure the performance of both

cases, we use inferences per second made by the entire system

rather than inferences per second as seen by each video feed,

for a fair comparison. Figure 18 shows the result.

Fig. 18: Performance of Tetris with one thread and varying feeds.

The baseline version of the detection model has a constant

throughput of 50 IPS even with varying number of feeds,

indicating that it does not scale when handling multiple video

feeds, which is to be expected since the GPU is saturated at

one feed. Tetris begins at 100 IPS with a single feed thanks

to active regions and gains by nearly 50% when processing

four or more feeds, at which point GPU saturates. Overall,

Tetris yields up to 3x throughput gain with a single thread.

Multiple Threads Multiple Feeds

We next assess system throughput in the case of two or more

threads, each with its own model. Based on the previous

result, we fix the number of video feeds per thread at four.

This essentially means that each thread will be constructing

tiled batches from active regions from four video feeds. Once

again, we compare with the baseline system in the same

configuration, with two or more threads each processing four

video feeds. Each inference done in the baseline system is

performed on a typical batch constructed by stacking each

frame from all feeds. The throughput of these multithreaded

configurations is measured with and without CUDA streams

(when we do use CUDA streams, the model for each thread

is assigned a unique stream) and compared in Figure 19.

Fig. 19: Performance of system at four feeds and varying threads.

It is apparent that both systems benefit from having multiple

threads. Gains here come from parallelism on the CPU, but

more importantly, filling in idle gaps on the GPU created

as other threads work on the CPU. Figure 19 also contrasts

the performance with and without CUDA streams. Note that

Tetris benefits from CUDA streams due to its reduced

processing volume, which equates to smaller, more easily

parallelizable, GPU kernels. The throughput of the baseline

version goes up from 50 IPS to 80 IPS with 3 threads, whereas

Tetris improves from 150 IPS to around 380 IPS with 6

threads, amounting to more than 4.5x gain over the baseline.

Levels of Activity

We now assess the relative performance of Tetris at 3 ac-

tivity levels previously discussed. Figure 20 shows the average

inference time for 4 video feeds from each activity level.

Inference times without Tetris are relatively constant, as



the baseline system is only marginally influenced by the video

content (these influences arise in the RPN of FRCNN). As

expected, gain with Tetris is low at high activity level due to

larger active region areas. Interestingly we see little difference

between low and medium levels of activity. In practice, video

activities mostly fall into medium and low activity levels, so

the gains from Tetris hold in real deployments.

Fig. 20: Performance with and without Tetris at varying levels of
activity at one thread and four feeds. Without Tetris, performance is
relatively constant as it is not influenced by activity. Small differences
present are due to the variable video content. With Tetris, greater
activity results in larger inference time due to larger active regions.

Inference Accuracy

We evaluate the accuracy of our system on the medium activity

videos, for a single thread and varying numbers of feeds, and

compare it to that of the baseline. Figure 21 shows these results

for 1 thread at 2 and 4 feeds, (top and bottom, respectively).

We observe that the benefits of our system come at a slight

cost in accuracy, which increases with the number of feeds per

thread. This indicates that the accuracy loss is incurred by the

active region packing process. Still, trading off no more than

5% drop in average precision for higher than 4x gain in terms

of overall throughput is cost-effective for most applications.

The overall outcome of this work is summarized in Figure

2. Here, the baseline system is assumed to batch all current

frames from each feed into a single deep inference. In case of

Tetris, the best configuration of threads and feeds per thread

is adopted for the given number of total video feeds. These

results indicate that depending on the frame rates of the video

feeds, Tetris can serve up to 5x number of feeds compared

to the baseline, particularly at lower frame rates. Consequently,

Tetris can yield substantial savings in deployment cost.

IV. LIMITATIONS AND DISCUSSION

Adverse Artifacts of Tiling: Frame subtraction and bin-packing

modify the input volume in unexpected ways. The modified

input volume could affect convolution feature map in the later

stages. For instance, the conv5 layer of the VGG-16 network

has a receptive field of 163 × 163 for an input size 227 ×

227. Providing only a part of the video frame as input could

Fig. 21: Accuracy of baseline and our system for 1 thread at 2
(top) and 4 (bottom) feeds evaluated on medium activity videos. We
observe that as the number of feeds increase, accuracy drops.

modify conv5 feature map, thereby affecting the subsequent

stages. However, one could finetune the deep learning model

on artificial images such as ours to overcome this problem.

Tradeoff between Inference Accuracy and Throughput: Our

evaluation has shown that Tetris can yield more than 4x

gain in inference throughput at the cost of 5% drop in inference

accuracy. While we believe this is a worthy tradeoff, it is

unclear whether this is optimal or desirable, as it depends on

requirements of the applications. We need to investigate this

in-depth to make a compelling case for Tetris.

V. RELATED WORK

Ubiquitous real-time video analytics remains an open and

exciting research problem, and is fueled by recent advances

in hardware and deep learning. CNNs have been shown

to outperform most existing computer vision techniques for

classification [10], [11], detection [3], [12], and tracking

problems [13], [14]. Many methods to optimize deep network

training and inferences have been proposed. For instance,

DeepCompression [15] uses Huffman encoding to substan-

tially reduce the in-memory footprint of the network weights.

BinaryConnect [16] and XNorNet [17] propose binary network

weights to improve training and inference time on CPUs.

DistBelief [18] is a framework to train large deep-learning

models on a distributed cluster of CPUs. Nickel [19] is a

framework by Nvidia to parallelize neural network training on



a set of GPUs. Our work is orthogonal to all these approaches

and can be applied to further reduce the inference time.

Apart from improving accuracy and computation delay, several

deployment models of video-analytics have been proposed.

Cloudlet [20] aims to bring computation closer to IoT devices.

VideoStorm [21] is a cloud-based framework to process a large

number of queries on live video streams. ParkMaster [22] is an

application of edge-based video-analytics to find free parking

spots. MCDNN [23] is an approximate resource allocator that

attempts to serve maximum number of heterogeneous video

streams by trading-off accuracy for resource use. MCDNN

poses resource allocation as an optimization problem amongst

various DNN models while our work optimizes processing

pipeline and DNN models to achieve the same task. Similar

to our work, DeepMon [24] applies background subtraction

and uses mobile device GPU to perform object classification.

Tetris is also an edge-based video-analytics system; how-

ever, it is designed for real-time inferences on live video feeds,

exploiting the parallelism on a GPU.

Scheduling policies of the CUDA library providing insights on

execution of GPU kernels are exposed by [1] and [25]. [26] is a

multi-camera video analytics system on the GPU, resembling

Tetris w/o binpack in parts. SSL [5] is a framework

to learn structured sparsity in a network that can be exploited

by cuSparse library to improve inference time by up to 3x.

We assessed the applicability of SSL to Tetris and found

that, with a significant engineering effort, our performance

could be further improved by 1.6x (applying a 3x speedup to

convolutions, which account for 60% of the inference time).

A rich set of industries are emerging around video-analytics.

Pilot AI is a start-up specializing in deploying deep-learning

models on resource-constrained embedded hardware. Dextro

[27] uses deep-learning to summarize multiple live video

feeds. [28] derives real-time insights using video-analytics on

surveillance cameras. Such deployments can adopt Tetris

to improve the scalability of their systems.

VI. CONCLUSION

We present an approach to improve the scalability of video

analytics at the edge by enabling a single GPU to perform

deep inferences on a greater number of live camera feeds.

Our approach includes batch processing of data using CUDA

streams to increase concurrency between multiple feeds. It

employs frame subtraction to detect active regions, paired with

a tiling algorithm to efficiently condense these regions into a

single batch. We demonstrate that this approach significantly

improves the efficiency of processing multiple feeds on a

single GPU compared to the current state of the art. Our evalu-

ation with Duke MTMC dataset [2] shows average throughput

gains of more than 4x by trading off 5% drop in inference

accuracy. We plan to investigate this tradeoff further and apply

Tetris to a variety of video analytics applications.

REFERENCES

[1] N. Otterness, M. Yang, T. Amert, J. Anderson et al., “Inferring the
scheduling policies of an embedded CUDA GPU,” in OSPERT, 2017.

[2] E. Ristani et al., “Performance measures and a data set for multi-target,
multi-camera tracking,” in Benchmarking Multi-Target Tracking, 2016.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in NIPS, 2015.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[5] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in NIPS, 2016.

[6] H. Hu et al., “Network trimming: A data-driven neuron pruning ap-
proach towards efficient deep architectures,” CoRR, 2016.

[7] X. Jin et al., “Training skinny deep neural networks with iterative hard
thresholding methods,” CoRR, vol. abs/1607.05423, 2016.

[8] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” CoRR, vol. abs/1707.06342, 2017.

[9] G. Dósa, The Tight Bound of First Fit Decreasing Bin-Packing Algorithm

Is FFD(I) 11/9OPT(I) + 6/9. Springer Berlin Heidelberg, 2007.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[12] W. Liu et al., “Ssd: Single shot multibox detector,” in ECCV, 2016.

[13] L. Bertinetto, J. Valmadre, J. F. Henriques et al., “Fully-convolutional
siamese networks for object tracking,” in ECCV, 2016.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma et al.,
“ImageNet Large Scale Visual Recognition Challenge,” IJCV, 2015.

[15] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” ICLR, 2016.

[16] M. Courbariaux et al., “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in NIPS, 2015.

[17] M. Rastegari, V. Ordonez et al., “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in ECCV, 2016.

[18] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior
et al., “Large scale distributed deep networks,” in NIPS, 2012.

[19] Nvidia, “Nickel,” https://github.com/NVIDIA/nccl, 2017.

[20] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai et al., “Edge analytics
in the internet of things,” IEEE Pervasive Computing, 2015.

[21] H. Zhang, G. Ananthanarayanan, P. Bodik et al., “Live video analytics
at scale with approximation and delay-tolerance.” in NSDI, 2017.

[22] G. Grassi, P. Bahl, K. Jamieson, and G. Pau, “Parkmaster: An in-vehicle,
edge-based video analytics service for detecting open parking spaces in
urban environments,” in IEEE/ACM SEC, 2017.

[23] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “MCDNN: An approximation-based execution framework for
deep stream processing under resource constraints,” in MobiSys, 2016.

[24] L. N. Huynh et al., “Deepmon: Building mobile gpu deep learning
models for continuous vision applications,” in MobiSys, 2017.

[25] R. Vuduc et al., “On the limits of GPU acceleration,” in Proceedings of

the 2nd USENIX conference on Hot topics in parallelism, 2010.

[26] P. Guler, D. Emeksiz et al., “Real-time multi-camera video analytics
system on gpu,” Journal of Real-Time Image Processing, 2016.

[27] Dextro, http://dextro.co/, 2017.

[28] Intelli-Vision, https://www.intelli-vision.com/, 2017.


